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Recent developments in both Japan and the U.S. have brought new attention to the
question of how policy should be conducted when short-term nominal interest rates reach a
level below which no further interest-rate declines are possible (as in Japan), or below which
further interest-rate declines are regarded as undesirable (arguably the situation of the U.S.).
It is sometimes feared that when nominal interest rates reach their theoretical or practical
lower bound, monetary policy will become completely impotent to prevent either persistent
deflation or persistent underutilization of productive capacity. The experience of Japan for
the last several years suggests that the threat is a real one.

In a previous paper (Eggertsson and Woodford, 2003), we consider how the existence of
a theoretical lower bound for nominal interest rates at zero affects the optimal conduct of
monetary policy, under circumstances where the natural rate of interest — the real interest
rate required for an optimal level of utilization of existing productive capacity — can be
temporarily negative, as in Krugman’s (1998) diagnosis of the recent situation in Japan. We
show that the zero lower bound can be a significant obstacle to macroeconomic stabilization
at such a time, through an approach to the conduct of monetary policy that would be effective
under more normal circumstances. Nonetheless, we find that the distortions created by the
zero lower bound can be mitigated to a large extent, in principle, through commitment to the
right kind of policy. We show that an optimal policy is history-dependent, remaining looser
after the real disturbance has dissipated than would otherwise be chosen given the conditions
prevailing at that time. According to our model, the expectation that interest rates will be
kept low for a time even after the natural rate of interest has returned to a positive level
can largely eliminate the deflationary and contractionary impact of the disturbance that
temporarily causes the natural rate of interest to be negative.

An important limitation of our previous analysis is that it abstracted entirely from the
role of fiscal policy in coping with a situation of the kind that may give rise to a liquidity
trap. In the model of Eggertsson and Woodford (2003), fiscal policy considerations of two
distinct sorts are omitted. First, in the consideration of optimal policy there, no fiscal

instruments are assumed to be available to the policymaker. The sole problem considered



was the optimal conduct of monetary policy, taking fiscal policy as given, and assuming
that fiscal policy fails to eliminate the temporary decline in the natural rate of interest that
created a challenge for monetary policy. And second, the fiscal consequences of alternative
monetary policies are ignored in the characterization of optimal monetary policy. It is thus
implicitly assumed (as in much of the literature on the evaluation of alternative monetary
policy rules) that the distortions associated with an increase in the government’s revenue
needs are of negligible importance relative to the distortions resulting from the failure of
prices to adjust more rapidly when considering alternative monetary policies. This would be
literally correct if a lump-sum tax were available as a source of revenue, but is not correct
(at least, not completely correct) given that only distorting taxes exist in practice.

In the present paper, we seek to remedy both omissions by extending our analysis to take
account of the consequences of tax distortions for aggregate economic activity and pricing
decisions. The model that we consider introduces a distorting tax (which we model as a
VAT) that is assumed to be the only available source of government revenues, and considers
both the optimal conduct of monetary policy (in particular, the optimal evolution of short-
term nominal interest rates) and the optimal timing of tax collections in such a setting. Our
key result is an extension of the analysis of Benigno and Woodford (2003) to a case in which
the zero lower bound on nominal interest rates is a binding constraint on what can be done
with monetary policy.

There are several important issues that we wish to clarify with such an investigation.
First, we wish to understand the implications of an occasionally binding zero lower bound
for optimal tax policy. Feldstein (2002) has suggested that while tax policy is not a useful
instrument of stabilization policy under normal circumstances — this problem being both
adequately and more efficiently addressed by monetary policy, because of the greater speed
and precision with which central banks can respond to sudden economic developments —
there may nonetheless be an important role for fiscal stabilization policy when a binding zero
bound constrains what can be done through monetary policy. Here we consider this issue by

analyzing optimal fiscal policy in a setting that has been contrived to yield the result that



it is not optimal to vary the tax rate in response to real disturbances, as long as these do
not cause the zero bound to bind.! We find that it is indeed true that an optimal tax policy
involves changing tax rates in response to a situation in which the zero bound is temporarily
binding, and we find furthermore that the optimal change in tax rates is largely temporary.
However, the nature of the optimal tax response to a liquidity trap is quite different from
traditional Keynesian policy advice. In the case that only taxes with supply-side effects are
available, we find that it is actually optimal to raise taxes while the economy is in a liquidity
trap. And while we find that Feldstein is correct to argue that tax policy can eliminate the
problem of the zero bound in principle, the conditions under which this can be done are
somewhat more special than his discussion suggests.

Second, we wish to consider the robustness of our previous conclusions, about the impor-
tance of commitment by the central bank to a history-dependent monetary policy following
a period in which the zero bound binds, to allowing for the use of fiscal policy in a way
that mitigates the effects of the real disturbance to the extent possible. Many readers have
worried that the demonstration in Eggertsson and Woodford (2003) of a dramatic benefit
from commitment to a history-dependent monetary policy depends on having excluded from
consideration the traditional Keynesian remedy for a liquidity trap, i.e., countercyclical fiscal
policy.2 Not only might monetary policy be unimportant once a vigorous fiscal response is
allowed, but commitment of future policy and signalling of such commitments might also be
found to be of minor importance, once one introduces an instrument of policy (tax incen-
tives) that can affect spending and pricing decisions quite independently of any change in
expectations regarding future policy.

We address this issue by considering optimal monetary policy when tax policy is used

IThe real reason that Feldstein does not consider tax policy to be a useful tool of everyday stabilization
policy, of course, is not the one on which our model relies; for we assume, for purposes of normative analysis,
that tax rates can be quickly adjusted on the basis of full information about current aggregate conditions.
But by considering a case in which it would be optimal to fully smooth tax rates at times when the zero
bound does not bind (and has not recently bound), we can show clearly that the zero bound introduces a
new reason for it to be desirable for tax rates to depend on aggregate conditions.

2 At the Brookings panel meeting at which our previous paper was presented, a number of panel members
protested the omission of any role for fiscal policy; see the published discussion of Eggertsson and Woodford
(2003).



optimally, and examining the degree to which it involves a commitment to history-dependent
policy. We find that except under the most favorable circumstances for the effective use of
fiscal policy, optimal monetary policy continues to be similar in important respects to the
optimal policy identified in our previous paper. In particular, it requires the central bank
to commit itself to maintain a looser policy following a period in which the natural rate of
interest has been negative (and the zero interest-rate bound has been reached) than would
otherwise be optimal given conditions at the later time. This implies a temporary period of
inflation and eventual stabilization of the price level around a higher level than would have
been reached if the zero bound had not been hit. On the other hand, the welfare gains from
such a sophisticated monetary policy commitment are relatively modest when fiscal policy
is used for stabilization purposes, and if fiscal policy is sufficiently flexible, they disappear
altogether.

We further show that when the set of available tax instruments is restricted in a way
that seems to us fairly realistic, it is also optimal for tax policy to be conducted in a history-
dependent way. The policy authorities should commit to a more expansionary fiscal policy
(i.e., lower tax rates) after the disturbance to the natural rate of interest has ended; thus
there should be a commitment to use both monetary and fiscal policy to create “boom”
conditions at that time. Whether monetary policy is optimal or not, the optimal fiscal policy
is history-dependent and depends on successful advance signalling of policy commitments.

In fact, we compare the outcome with fully optimal monetary and fiscal policies with
the best outcome that can be achieved by purely forward-looking policies. We find that the
choice of an optimal fiscal rule, even subject to the restriction that policy be purely forward-
looking (in the sense of Woodford, 2000), allows substantial improvement over the outcome
that would result from a forward-looking monetary policy (i.e., a constant inflation target)
in the case of a simple tax-smoothing rule for taxes. Nonetheless, further improvements in
stabilization are possible through commitment to history-dependent policies.

It is also worth noting that the gains from fiscal stabilization policy that we find, even
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public’s correct understanding of how current developments change the outlook for future
policy. Optimal fiscal policy involves raising taxes during the liquidity trap in order to lower
the public debt (or build up government assets), implying that taxes will be lower later. The
expectation of lower taxes later can be created even under the constraint that fiscal policy
be purely forward-looking, because the level of the public debt is a state variable that should
condition future tax policy even when policy is purely forward-looking. But the effectiveness
of the policy does depend on the public’s expectations regarding future policy changing in
an appropriate way when the disturbance occurs, and so there remains an important role for
discussion by policymakers of the outlook for future policy.

Finally, we wish to re-examine the character of optimal monetary policy taking account of
the fiscal effects of monetary expansion. Auerbach and Obstfeld (2003) emphasize that when
tax distortions are considered, there is an additional benefit from expansionary monetary
policy in a liquidity trap, resulting from reduction of the future level of real tax collections
that will be needed to service the public debt. We consider this issue by analyzing optimal
monetary policy in a setting where only distorting sources of government revenues exist, and
where there is assumed to be an initial (nominal) public debt of non-trivial magnitude.

An important issue that is not considered in Auerbach and Obstfeld’s calculation of the
welfare gains from monetary expansion is the extent to which the gains that they find would
also be present even if the economy were not in a liquidity trap — and thus constitute an
argument, not for unusual monetary expansion in the event of a liquidity trap, but for always
expanding the money supply. Of course, as is well known from the literature on rules versus
discretion, it is easy to give reasons why monetary expansion should appear attractive to a
discretionary policy authority, that asks, at a given point in time, what the best equilibrium
would be from that time onward, taking as given past expectations and not regarding itself
as bound by any past commitments. At the same time, in several well-known models, the
authority ought to prefer to commit itself in advance not to behave this way, owing to the
harmful consequences of prior anticipation of inflationary policy. It is important to consider

the extent to which the gains from expansionary monetary policy under circumstances of



a liquidity trap are ones that one would commit oneself in advance to pursue under such
a contingency, or whether they represent the sort of temptation under discretionary policy
that a sound policy must commit itself to resist.

We address this question by considering optimal state-contingent policy under advance
commitment. While we do consider how policy should be conducted from some initial date
at which it is already known that a disturbance that lowers the natural rate of interest has
occurred, we consider this question from a “timeless perspective,” as advocated by Woodford
(1999; 2003, chap. 7); this means that characterize a policy from that date forward to which
the policy maker would have wished to commit itself at an earlier date.> We find that
such a commitment will involve a zero inflation rate over periods when the zero bound does
not bind and has not recently bound; but that the central bank will commit itself to a
policy that permanently increases the price level by a finite proportion each time the zero
bound is reached. We also compare the size of the optimal increase in the price level, for
a given size and duration of real disturbance, for high-debt versus low-debt economies, in
order to see to what extent the existence of a higher shadow value of additional government
revenues (in order to reduce tax distortions) strengthens the case for a commitment to
expansionary policy under circumstances of a liquidity trap. We find that optimal policy is
somewhat more inflationary (in response to a real disturbance that lowers the natural rate of
interest) in the case of an economy with a larger quantity of nominal public debt and more
severe tax distortions; however, neither optimal fiscal policy nor optimal monetary policy
are fundamentally different in this case than they are in the simpler case of an economy with

zero initial public debt and a zero steady-state tax rate.

1 An Optimizing Model with Tax Distortions

The framework that we use to analyze the questions posed above is the one introduced

in Benigno and Woodford (2003). We first review the structure of the model, and then

3See also Svensson and Woodford (2004), Giannoni and Woodford (2002), and Benigno and Woodford
(2003), for further discussions of this concept.



the linear-quadratic approximation derived by Benigno and Woodford. We finally discuss
the additional complications that are introduced in the case that the zero lower bound on

nominal interest rates is sometimes a binding constraint on monetary policy.

1.1 The Exact Policy Problem

Here we review the structure of the model of Benigno and Woodford (2003). Further details
are provided there and in Woodford (2003, chaps. 3-4). The goal of policy is assumed to
be the maximization of the level of expected utility of a representative household. In our

model, each household seeks to maximize
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where C; is a Dixit-Stiglitz aggregate of consumption of each of a continuum of differentiated
goods,
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with an elasticity of substitution equal to 8 > 1, and H,(j) is the quantity supplied of labor
of type j. Each differentiated good is supplied by a single monopolistically competitive pro-
ducer. There are assumed to be many goods in each of an infinite number of “industries”; the
goods in each industry j are produced using a type of labor that is specific to that industry,
and also change their prices at the same time. The representative household supplies all

types of labor as well as consuming all types of goods. We follow Benigno and Woodford in

assuming the isoelastic functional forms,
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where 7, > 0, and {C;, H,} are bounded exogenous disturbance processes. (We use the

notation & to refer to the complete vector of exogenous disturbances, including C; and H,.)



We assume a common technology for the production of all goods, in which (industry-

specific) labor is the only variable input,
yi(i) = Auf (he(0)) = Ach(i)/?,

where A; is an exogenously varying technology factor, and ¢ > 1. Inverting the production
function to write the demand for each type of labor as a function of the quantities produced

of the various differentiated goods, and using the identity
Y,=C+ Gy

to substitute for C, where (G} is exogenous government demand for the composite good, we
can write the utility of the representative household as a function of the expected production
plan {y;(i)}.

The producers in each industry fix the prices of their goods in monetary units for a
random interval of time, as in the model of staggered pricing introduced by Calvo (1983).
We let 0 < a < 1 be the fraction of prices that remain unchanged in any period. Each
supplier that changes its price in period ¢ optimally chooses the same price p; that depends
on aggregate conditions at the time. Benigno and Woodford (2003) show that the optimal

relative price is given by
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where w = ¢(1+v) —1 > 0 is the elasticity of real marginal cost in an industry with respect
to industry output, and F; and K; are two sufficient statistics for aggregate conditions
at date t; each is a function of current aggregate output Y;, the current tax rate 7, the
current exogenous state &, and the expected future evolution of inflation, output, taxes and
disturbances. In the model of Benigno and Woodford (2003), the tax rate 7; is a proportional
tax on sales revenues, included in the posted price of goods, like a VAT. This tax is the sole
source of government revenues; it distorts the allocation of resources owing to its effect on

the price-setting decisions of firms.*




The Dixit-Stiglitz price index P, then evolves according to a law of motion
_1
P, = {(1 —a)pi Tl + othljle} e (1.6)
Substitution of (1.5) into (1.6) implies that equilibrium inflation in any period is given by

(1.7)
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where I, = P,/P,_1. This defines a short-run aggregate supply relation between inflation
and output, given the current tax rate 7, current disturbances &;, and expectations regarding
future inflation, output, taxes and disturbances.

Again following Benigno and Woodford, we abstract here from any monetary frictions
that would account for a demand for central-bank liabilities that earn a substandard rate
of return; we nonetheless assume that the central bank can control the riskless short-term

nominal interest rate 4;,> which is in turn related to other financial asset prices through the

arbitrage relation
149 = [EtQt,tH]_l»
where Q7 is the stochastic discount factor by which financial markets discount random

nominal income in period T to determine the nominal value of a claim to such income in

period t. In equilibrium, this discount factor is given by

tac(OT;ST)ﬁ
ac(Ct;gt) PT,

so that the path of nominal interest rates implied by a given path for aggregate output and

Qur = 4" (1.8)

inflation is given by
ﬁc(Y;t - Gy; ft)Pt_l
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4We discuss the consequences for our analysis of allowing for other kinds of taxes in section 2.2. The main
limitation on our analysis that results from assuming that only a VAT rate can be varied is that this tax
instrument affects aggregate supply incentives but not the intertemporal Euler equation (1.9) for the timing
of private expenditure. In fact, many other important instruments of fiscal policy, such as variations in a
payroll tax rate or in the rate of tax on labor income, would have the same property, and we think that the
supply-side effects of variations in tax policy are the ones of greatest importance in practice. We do however
discuss in section 2.2 the conditions under which tax policy can be used to affect the timing of expenditure.

5For discussion of how this is possible even in a “cashless” economy of the kind assumed here, see Woodford
(2003, chapter 2).
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Without entering into the details of how the central bank implements a desired path for
the short-term nominal interest rate, it is important to note that it will be impossible for
it to ever be driven negative, as long as private parties have the option of holding currency

that earns a zero nominal return as a store of value. Hence the zero lower bound
i, >0 (1.10)

is a constraint on the set of possible equilibria that can be achieved by any monetary policy.
Benigno and Woodford assume that this constraint never binds under the optimal policies
that they consider, so that they do not need to introduce any additional constraint on the
possible paths of output and prices associated with a need for the chosen evolution of prices
to be consistent with a non-negative nominal interest rate. This can be shown to be true
in the case of small enough disturbances, given that the nominal interest rate is equal to
7 = 371 —1 > 0 under the optimal policy in the absence of disturbances; but it need not
be true in the case of larger disturbances. The goal of the present paper is to consider the
implications of this constraint.

Our abstraction from monetary frictions, and hence from the existence of seignorage
revenues, does not mean that monetary policy has no fiscal consequences, for interest-rate
policy and the equilibrium inflation that results from it have implications for the real burden
of government debt. For simplicity, we shall assume that all public debt consists of riskless
nominal one-period bonds. The nominal value B; of end-of-period public debt then evolves

according to a law of motion
By = (1+14_1)Bi_1 + Pysy, (1.11)
where the real primary budget surplus is given by®
s = 1Yy — Gy — (. (1.12)

Here 74, the share of the national product that is collected by the government as tax revenues

6Benigno and Woodford (2003) also allow for exogenous variations in the size of government transfer
programs, but we do not consider this form of disturbance here.
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in period t, is the key fiscal policy decision each period; both the real value of government
purchases Gy and the real value of government transfers (; are treated as exogenously given.

Rational-expectations equilibrium requires that the expected path of government sur-
pluses must satisfy an intertemporal solvency condition

P

e Ey > Ryrst (1.13)
t

T=t

bi—1

in each state of the world that may be realized at date t, where R, = Q1 Pr/P; is the
stochastic discount factor for a real income stream, and This condition restricts the possible
paths that may be chosen for the tax rate {7;}. Monetary policy can affect this constraint,
however, both by affecting the period ¢ inflation rate (which affects the left-hand side) and
(in the case of sticky prices) by affecting the discount factors {R;r}. Again using (1.8), we
can equivalently write this as a constraint on the possible paths of aggregate prices, output

and the tax rate,
btflﬂcﬁ/;t — Gy ft)Ht_l =L Tf: ﬂT_tﬁc(YT — Gr; fT)[TTYT - GT]~ (1-14)

=t

The complete set of restrictions on the joint evolution of the variables {I1;, Y3, i;, 74} under
any possible monetary and fiscal policies is then given by equations (1.7), (1.9), (1.10), and
(1.13), each of which must hold for each ¢ > ty, given the initial public debt b;,_;. We wish
to consider the state-contingent evolution of these variables that will maximize the welfare of

the representative household, measured by (1.1), given the exogenously specified evolution

of the various disturbances {&;}.

1.2 A Linear-Quadratic Approximation

Benigno and Woodford (2003) derive a local approximation to the above policy problem that
will be of use in our own analysis of optimal policy as well. This is obtained from Taylor
series expansions of both the objective and the constraints (other than the zero lower bound,
that they assume not to bind) around the steady state values of the endogenous variables

that represent an optimal policy in the case that there are no disturbances. They show that
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this optimal steady state involves zero inflation (and hence identical, constant prices in all
industries), an arbitrary constant level of real public debt b (that depends on the initial
level of real claims on the government), and a constant tax rate 7 and output level Y that
are jointly consistent with the aggregate supply relation (1.7) and the government’s budget
constraint, given a zero inflation rate and the constant debt level b. The relation between the

steady-state values of these variables implied by the government budget constraint is simply

(1-p)b=7Y -G —C.
Because there is zero inflation in the steady state, the steady-state output level Y is just
the flexible-price equilibrium level of output (in the absence of disturbances) in the case of
a constant tax rate 7.

A critical issue for the characterization of optimal stabilization policy is the degree of
efficiency of the steady-state level of output Y (i.e., the size of the discrepancy between
Y and the level of output that would maximize utility subject to the feasibility constraint
implied by the production technology). The degree of inefficiency of the steady state output

level can be measured by the parameter

p=1_ 0117
0 nv

<1, (1.15)

which indicates the steady-state wedge between the marginal rate of substitution between
consumption and leisure and the marginal product of labor. (Here g > 1 is the steady-state
level of the markup of wage demands over those associated with competitive labor supply.)
Our numerical examples assume that b > 0, implying that 7 > 0 and hence that ® > 0, so

" This implies that the effects of stabilization

that steady-state output is inefficiently low.
policy on the average level of output matter for the welfare evaluation of alternative policies.
Benigno and Woodford (2003) show that it is nonetheless possible to correctly evaluate

welfare under alternative policies, to second order in a bound on the amplitude of the exoge-

nous disturbances, using only a log-linear approximation to the model equilibrium relations

"This contrasts with the assumption made in Eggertsson and Woodford (2003). However, we nonetheless
obtain a quadratic loss function of the form assumed in our previous analysis, as explained below.
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to characterize equilibrium dynamics under a given policy. This is possible when one uses
as one’s welfare measure a quadratic loss function in which the effects of stabilization policy
on average output have already been taken into account in the loss function, so that the loss
function is purely quadratic, rather than depending explicitly on the average level of out-
put. In fact, Benigno and Woodford show that a quadratic approximation to the expected

discounted utility of the representative household is a decreasing function of the objective

ad 1 1~
E Y g {2qﬂ7r§ + —qy(Y; — Yt*)z} : (1.16)

t=to 2

where the coefficients ¢, g, are functions of the model parameters, and the target level of
output Y;* is a function of all of the exogenous real disturbances (discussed further in the
next section). In the case that both the share of output consumed by the government and
the steady-state tax rate are not extremely large, the coefficients ¢, g, are shown both to be
positive; this is true for the numerical calibrations considered below. Hence the stabilization
of both inflation and the welfare-relevant output gap y; = Y; — Yt* is desirable for welfare.

Given the purely quadratic form of the objective (1.16), a log-linear approximation to
the model structural relations suffices to allow a characterization of welfare under alternative
rules that is accurate to second order, and hence a characterization of optimal policy that
is accurate to first order in the amplitude of the disturbances. A first-order Taylor series
expansion of (1.7) around the zero-inflation steady state yields the log-linear aggregate-
supply relation

m = K[V, + Uf + ce&l] + BE T4, (1.17)

where 7, is the inflation rate, Y, = log(Y;/Y), and 7, = 7, — 7.8 Here the coefficients are given
by
(1-af)l-a)wto

" «Q 1+ wb

>0,

8Note a difference in notation from that used in Benigno and Woodford (2003), where 7; refers to the
deviation of log 7y from its steady-state value. Here we wish to be able to consider the case of a zero steady-
state tax rate. Our alternative notation implies a corresponding difference in the value of the coefficient v;
the coefficient ¢ defined in Benigno and Woodford (2003) is equal to 7¢ in our notation. Note that our
coefficient ¥ has a positive value even in the case that 7 = 0, while the coefficient defined by Benigno and
Woodford is zero in that case, even though an increase in the tax rate will still shift the aggregate-supply
relation in that case.

13



1 1
l1—-Tw+o1

Y=

> 0,

where 0 = 5C'/Y > 0 is an intertemporal elasticity of substitution for total (as opposed to
merely private) expenditure.’

This is the familiar “New Keynesian Phillips curve” relation, extended here to take
account of the effects of variations in the level of distorting taxes on supply costs. (Note
that —c’gft — 17, represents the log deviation of the flexible-price equilibrium level of output
from the steady-state output level Y, in the case of real disturbances & and a tax rate 7;.) It
is useful to write this approximate aggregate-supply relation in terms of the welfare-relevant

output gap ;. Equation (1.17) can be equivalently be written as
T = Ky + 7 + w| + BEm41, (1.18)

where u; is composite “cost-push” disturbance, indicating the degree to which the various
exogenous disturbances included in & preclude simultaneous stabilization of inflation, the
welfare-relevant output gap, and the tax rate. (The effects of real disturbances on this term

are discussed in the next section.) Alternatively we can write

T = K[y + V(T — 7)) + BE T4, (1.19)
where 7 = —1~!u; indicates the tax change needed at any time to offset the“cost-push”

shock, in order to allow simultaneous stabilization of inflation and the output gap (the two
stabilization objectives reflected in (1.16)).

The other constraint on possible equilibrium paths considered by Benigno and Woodford
(2003) is the intertemporal government solvency condition. A log-linear approximation to
(1.14) can be written in the form

Bt—l — SpTy — SbU_lyt =—fi +E; Z 5T_t[bny + b, (7 — 77)], (1.20)
T=t
where b, = (b, — b)/Y measures the deviation of the real public debt from its steady-state

level (as a fraction of steady-state output),’® and f; is a composite measure of exogenous

9Under the simplifying assumption of zero government purchases, maintained in our numerical examples
below, ¢ is simply the preference parameter .
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“fiscal stress.” (Note that the sum b1+ f+ indicates the degree to which a plan to maintain
zero inflation and a zero output gap for all periods T" > t would fail to be consistent with
government solvency. The way in which real disturbances affect the term f; is discussed
further in the next section.) The coefficient s, = b/Y indicates the steady-state level of
public debt as a proportion of steady-state output. Under the simplifying assumption of
zero government purchases, maintained in our numerical examples, the coefficients b, b,
indicating the effect on the government budget of variations in aggregate output and the tax

rate respectively, are equal to'!
b, =(1—0o Hr, b, =1.

In deriving the first-order conditions that characterize optimal policy, it is useful to write

this constraint in a flow form. Note that if (1.20) holds each period, it follows that

b1 — sy, — sy Y+ fi = [byye + br (72 — 77)] + BE, [[St — SpTes1 — Sp0 Yey1 + fra1) (1.21)
each period as well. The solvency condition also implies the transversality condition

lim B Ey[br_1 — symr — syo 'y + fr] =0,

T—o00

and this transversality condition, together with the requirement (1.21) for each period, im-
plies (1.20).

The linear-quadratic policy problem considered by Benigno and Woodford (2003) is then
the choice of state-contingent paths for the endogenous variables {7, y;, 7, l;t} from some
date ¢, onward so as to minimize the quadratic loss function (1.16), subject to the constraint
that conditions (1.19) and (1.20) be satisfied each period, given an initial value by,_; and

subject also to the constraints that m;,, and y;, equal certain precommitted values,

7Tt0 = 7_-(-1507 yto = gt07 (122)

0Here again our notation differs from that of Benigno and Woodford (2003), so that we can treat the case
of a steady state with zero public debt. As a consequence, our coefficients by, b, are equal to (1 — 3)s; times
the definitions given by Benigno and Woodford.

HMore general expressions for these coefficients can be found in the appendix to Benigno and Woodford
(2003), taking account of the change in notation discussed in the previous footnote.
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that may depend on the state of the world in period t;. The allowance for appropriately
chosen initial constraints allows us to ensure that the policy judged to be optimal from some
date ty onward corresponds to the commitment that would have optimally been chosen at
some earlier date. This means that even if we suppose that at date ty it is already known
that a disturbance has occurred, the optimal policy response that is computed is the way
that a policymaker should have committed in advance to respond to such a shock, rather
than one that takes advantage of the opportunity to choose an optimal policy afresh and

exploit existing expectations.!?

1.3 The Natural Rate of Interest and the Zero Bound

In the Benigno - Woodford (2003) characterization of optimal monetary and fiscal policy,
it is not necessary to include among the constraints of the policy problem any relations
that connect interest rates to the target variables (inflation and the output gap). It suffices
that there be some feasible level of short-term nominal interest rate at each point in time
associated with the solution to the constrained optimization problem that they define; it
does not actually matter what this interest rate is, in order to determine the optimal state-
contingent paths of inflation, output, tax rates, and the public debt. And since the nominal
interest rate is positive in the optimal steady state, the solution to their optimization problem
continues to imply a positive nominal interest rate at all times, as long as shocks are small
enough.

Here, however, we are interested in the case in which there are occasionally disturbances
large enough to cause the zero bound to bind, though we shall continue to assume that the
above local approximations to both the model structural relations and the welfare objective
are sufficiently accurate. In order to see how possible paths for the target variables are

restricted by this constraint, it is necessary to consider the equilibrium relation between

12Thus we consider a policy that is “optimal from a timeless perspective,” in the sense defined in Woodford
(2003, chap. 7). In fact, in the numerical exercises reported below, the optimal responses that are reported
are the same as those that would be obtained if the initial constraints (1.22) were omitted, since we set the
initial lagged Lagrange multipliers equal to zero.

16



interest rates and aggregate expenditure. A log-linear approximation to the FEuler equation

(ISexact) for optimal expenditure can be written in the form!3
Yi— g = BiYir1 — 9] — oli — Eimegr — 7), (1.23)

where ¢; is a composite exogenous disturbance indicating the percentage change in period
t output required in order to hold constant the representative household’s marginal utility
of additional real expenditure (despite shifts in impatience to consume or in government
purchases), o is again the intertemporal elasticity of substitution of private expenditure,
and 7 = 37! — 1 > 0 is the steady-state real rate of interest.

This can alternatively be written in terms of the welfare-relevant output gap as

Ve = Eyyipr — U(it — Eymp — 7"?)7 (1'24)
where
=740 (g —Y) — Eul(grs — Y;H)] (1.25)

represents the “natural rate of interest,” i.e., the equilibrium real rate of interest at each point
in time that would be required in order for output to be kept always at its target level.'*
Note that the natural rate of interest depends only on exogenous real disturbances.!® It
indicates the degree to which short-term nominal interest rates must be adjusted in order

to be consistent with full achievement of both stabilization goals — i.e., in order for output

to equal the target level while inflation is equal to zero each period. If the natural rate

13The 4; in this equation actually refers to log(1 + i;) in the notation of section 1.1, i.e., to the log of the
gross nominal interest yield on a one-period riskless investment, rather than to the net one-period yield. Note
also that this variable, unlike the others appearing in our log-linear approximate relations, is not defined as
a deviation from a steady-state value. This is so that we can continue to write the zero bound as a simple
requirement that i; be non-negative. Hence the steady-state value 7 appears in equation (1.23).

MFor symmetry with our definition of i;, we have also defined r; to be the absolute level of the natural
rate — technically, the log of a gross real rate of return — rather than a deviation from the steady-state
natural rate 7.

15The natural rate of interest defined here does not correspond to the flexible-price equilibrium real rate
of interest, which would depend on the path of the tax rate rather than only on the exogenous disturbances.
However, in the case of isoelastic preferences (assumed here) and zero government purchases (assumed in our
numerical example), it does correspond to what the equilibrium real rate of interest would be under flexible
prices in the event that the tax rate 7 were maintained at the steady-state level.
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of interest is sometimes negative, the zero lower bound on nominal interest rates alone will
imply that full achievement of these stabilization objectives is impossible, even in the absence
of cost-push shocks.

Taking account of the zero bound thus requires that we adjoin to the set of constraints
considered by Benigno and Woodford (2003) two additional constraints, namely (1.24) and
the zero bound

i > 0. (1.26)

We can replace these by a single constraint on possible paths for inflation and the output

gap,
Ui < By + o (r] + Eymig), (1.27)

as in Eggertsson and Woodford (2003). The optimal policy problem is then to choose state-
contingent paths {m,y;,7,b;} to minimize (1.16) subject to the constraints that (1.19),
(1.20) and (1.27) be satisfied each period, together with the initial constraints (1.22). This
reduces to the problem considered by Benigno and Woodford (2003) in the event that (1.27)
never binds. It is clear that the constraint is a tighter one the lower the value of the natural
rate of interest.

There are various reasons why real disturbances may shift the natural rate of interest.
On the one hand, there may be temporary fluctuations in the factor g, appearing in (1.23).
These may result either from variations in government purchases Gy, or from variations in the
preference parameter C,, indicating the level of private expenditure required to maintain a
constant marginal utility of real expenditure, and hence the variations in private expenditure
that occur if the private sector smooths the marginal utility of expenditure. But on the other
hand, any source of temporary fluctuations in the target output level }Aft* will also imply
variation in the natural rate of interest as defined here. As Benigno and Woodford (2003)
show, a large variety of real disturbances should affect Yt*, including (in the case of a distorted
steady state) variations in market power, as well as disturbances to both preferences and

technology.
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In the baseline case considered in the next section, we shall consider the challenges for
policy created by fluctuations in the natural rate of interest, while abstracting from the
effects of variations in either the cost-push term wu; in (1.18) or in the fiscal stress term f;
in (1.20). It is possible for a real disturbance to affect r} without any effect on either w,; or
fi- In our numerical examples, we shall simplify by assuming that there are no government
purchases, and we consider the effects of exogenous variations in the factors C; and H, in
(1.3) — (1.4), or in the technology factor A4;. Variation in the factor C; results in variation in
the term g;;'% indeed, under the simplifying assumption of no government purchases, g; is just
the deviation of log C; from its steady-state value. At the same time, all three disturbances
effect the target level of output, which under the assumption of no government purchases is
given by!”

-1
. g
}/t = _1gt+

w
. 1.28
w +O-—1Qt ( )

Here ¢, is the increase in log output that would be required to maintain a constant marginal
disutility of labor effort; it is positive if H, or A, are temporarily above their steady-state
levels.

In the case assumed in our baseline analysis, an exogenous disturbance temporarily makes
both ¢; and ¢ negative, but reduces g; by more. It follows from (1.28) that Yy declines, but
by less than the decline in g, so that g, — }A/t* is temporarily negative. Hence a temporary
disturbance of the kind proposed implies a temporary decline in the natural rate of interest.
In the specific numerical exercises reported below, we assume that an exogenous disturbance
changes C;, H, and/or A; from their steady-state levels, after which there is a probability
0 < p < 1 each period that C,\, = Cy, Hyy = Hy;, and A,y = A,, and on the other
hand a probability 1 — p that Cyuy = C, H, = H, and A, = A. Once the exogenous

16Tn our model, the factor C; is treated as a parameter of the preferences of the representative household.
However, the variable C; stands for all private expenditure in our model, and the utility function u(C}; ;) is
actually to be understood as a reduced-form representation of the way in which utility is increased by real
private expenditure of all types — on investment as well as consumer goods. (See Woodford, 2003, chap. 4,
for further discussion.) Thus fluctuations in Cy might also represent fluctuations in the marginal efficiency
of investment spending, for reasons treated as exogenous to our model.

17This is a special case of the more general formula given in the appendix of Benigno and Woodford (2003).
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preference and technology factors return to their steady-state levels, they are expected to
remain permanently at those values. In the case of this kind of disturbance, F;g;11 = pg:
and FE;qi11 = pqq, so that (1.25) implies that

-1

ry =7+ (1=p) (9t — @)-

w+o !

Thus 7} falls below its steady-state level ¥ > 0 when a shock of the kind hypothesized
occurs (so that g; < ¢; < 0), remains at the lower level for as long as the exogenous factors
remain at their irregular values, and returns to the steady-state level 7 (permanently) once
these factors return to their normal values. If the temporary disturbance is large enough (or
temporary enough), the natural rate of interest may be negative during the period that these
factors depart from their steady-state values. This is the case considered in the numerical
exercises below.

Benigno and Woodford (2003) show that if there are no government purchases, distur-
bance of these kinds have no cost-push effect, i.e., that u; = 0. This occurs because the
variations in Cy, H, and A, shift the flexible-price, constant-tax-rate equilibrium level of out-
put to exactly the same extent as the target level of output Y;* As a consequence, Y; = }Aft*
at all times is consistent with a constant tax rate 7, under flexible prices, and consequently
also consistent with a constant tax rate in the event that inflation is zero at all times, even
in the presence of price stickiness. Thus the aggregate-supply relation (1.19) requires no
variation in tax rates in order for complete achievement of both stabilization goals despite
the occurrence of shocks of this kind.

However, complete stabilization of inflation and the output gap may nonetheless be incon-
sistent with intertemporal government solvency. On the one hand, because the disturbance
reduces the target level of output f/t*, as discussed above, it reduces the level of real gov-
ernment revenues associated with an unchanged tax rate. On the other hand, a reduction
in the real rate of interest associated with zero inflation and a zero output gap (i.e., the
natural rate of interest), for the reasons also just discussed, will reduce the size of the tax

revenues needed for government solvency. It is possible (though a rather special case) that

20



these countervailing effects may precisely cancel. In the case of a disturbance of the specific
(Markovian) kind discussed above, the effect on the left-hand side of (1.14) is a percentage
increase equal to
o _1(9t - Yt*),
while the effect on the right-hand side is a percentage increase equal to
1-p
1—05p

Intertemporal solvency continues to be satisfied without any change in the tax rate if these

Y7+ 07 (g = Y,

two expressions are equal.
Using (1.28), we see that this occurs if it happens that

-
t

I BT |
=, ]0 Lo, = [a 1—|—] wq;. (1.29)

L—=p

In the baseline example in the next section, we shall assume a disturbance in which the
relative magnitudes of the shifts in ¢; and in ¢; are precisely those needed for this to be
so, so that f; = 0. (Alternatively, we assume a degree of persistence of the disturbance
of precisely the size needed to satisfy this condition, given the relative magnitudes of the
shifts in the two types of exogenous factors.) We assume parameter values under which both
factors in square brackets are positive; hence (1.29) requires that ¢, and ¢ have the same
sign, as assumed above. One can show that it also implies that g, is larger than ¢, in absolute
value, so that 7' moves in the same direction as ¢; and ¢, as also asserted above. In fact,

one can show that (1.29) implies that
r=r+ (8 - 1Y (1.30)

It follows that in our baseline example, the real disturbance that temporarily changes
the natural rate of interest has no effect on either the cost-push term u; in (1.18) or the
fiscal stress term f; in (1.20). This means that as long as the natural rate of interest remains
always non-negative, optimal monetary and fiscal policy would involve a constant tax rate,

a zero inflation rate and a zero output gap, and a nominal interest rate that tracks the
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temporary variation in the natural rate of interest. However, if the natural rate of interest
is temporarily negative, it will not be possible to achieve such an equilibrium. In this case,
the zero bound is a binding constraint. We take up the characterization of optimal policy in
such a case in the next section.

In general, of course, there is no reason for (1.29) to happen to hold. The case of most
practical interest is one in which a real disturbance that temporarily lowers the natural rate
of interest also lowers the fiscal stress term f; in (1.20). The reason is that the natural rate
of interest is only negative in the event of a disturbance that has a particularly large effect
on the natural rate of interest. This is most likely in the case that the shift in 1?;* does not
offset the shift in g, to the extent required for (1.29) to hold; but this means that the most
likely case is one in which the effect on the government budget of the decline (if any) in ¥,
is not as great as the effect of the decline in the real interest rate associated with complete
inflation and output-gap stabilization. Hence it is most likely in practice that a sharp decline
in the natural rate of interest will be associated with a reduction in fiscal stress (a negative
value of f;).

In section 2.3, we consider an alternative form of disturbance with this feature. Specifi-
cally, we consider the case of a disturbance which lowers the natural rate of interest without
affecting the target level of output. (An example of such a disturbance would be a temporary
decline in the rate of time preference; this is equivalent to a simultaneous reduction in C; and
increase in H,. Because the intratemporal first-order condition for optimal labor supply is
unaffected by such a disturbance, the flexible-price equilibrium level of output is unaffected.
And in the case of zero government purchases, this implies that fft* is unaffected as well.) In

this alternative special case, the fiscal stress term is given by
fi=s> BBy — 7). (1.31)
T=t

Hence a disturbance that temporarily lowers the natural rate of interest results in a reduction
in fiscal stress. In section 2.3, we consider how the character of optimal policy changes in

this more complex case.
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1.4 The Zero Lower Bound as a Constraint on Stabilization Policy:
A Simple Example

Here we show that the existence of the zero lower bound on nominal interest rates can
have important consequences for macroeconomic stability. We do this by considering policy
rules that would lead to optimal outcomes in the event that real disturbances are not large
enough to cause the zero lower bound to bind, and then showing that in the event of a larger
disturbance, the bound can bind. We further show that when the bound does bind, the
consequence can be both substantial deflation and a substantial negative output gap, both
of which are have adverse welfare consequences under the analysis of stabilization objectives
presented above.

Our analysis is simplest if we assume an initial public debt of zero, as well as zero
government purchases and zero government transfers at all times, so that the steady-state
tax rate 7 is also zero. In this zero-debt case, s, = 0, so that the constraint (1.20) takes a

simpler form,
oo

by = E Y. 7 (1.32)

T=t

There are no effects of inflation variation on the government budget in this case (to first
order), since there is no nominal public debt in the steady state; and there are no effects of
output variation (to first order), either, since there is a zero tax rate in the steady state.

There is also no fiscal stress term in (1.32). The assumption that s, = 0 implies that
there is no fiscal stress effect of variations in either the natural rate of interest (since there is
no debt to roll over, in the steady state) or in the target level of output (output variations
have no revenue effects, to first order, because the steady-state tax rate is zero). Hence as
long as the real disturbance that lowers the natural rate of interest has no cost-push effect
— which will be true of any disturbances to C,, H, or A,, under our assumption that sq = 0
— it will have no fiscal stress effect, either. Hence we can abstract from variations in either
u; or f; in this case, without requiring the special assumption (1.29).

In the absence of either cost-push or fiscal stress effects, it is evident that (1.16) would
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be minimized by a policy that maintains m; = 3y, = 7, = 0 at all times, as long as this is
consistent with the zero bound on interest rates. Such a policy is consistent with (1.26) as
long as " > 0 at all times, which will be true in the case of small enough real disturbances.
On the other hand, (1.26) implies that no such equilibrium is possible in the event that the
natural rate of interest is occasionally negative.

This suggests the following thought experiment. Suppose that fiscal and monetary policy
are conducted in accordance with the following simple rules: (i) The tax rate 7; that is chosen
at each point in time is the one that the fiscal authority expects to be able to maintain
indefinitely, without violating the intertemporal government solvency condition; that is, an
expected path of taxes such that Ey7p = 7; for all T' > ¢ is consistent with (1.20); and (ii)
monetary policy is used to ensure that inflation equals zero at all times, unless the zero bound
prevents interest rates from being lowered enough to prevent deflation. In our baseline case,

since (1.20) reduces to (1.32), the proposed fiscal rule is simply

7= (1= B)be_1. (1.33)

The monetary policy rule (a strict zero inflation target of the kind discussed in Eggertsson
and Woodford, 2003) implies that

T < 0 (1.34)

each period, and that in each period either (1.26) or (1.34) must hold with equality.

If real disturbances are small enough so that the natural rate of interest is non-negative at
all times, then the policy rules (1.33) — (1.34) result in an equilibrium in which b, = by,_1 = 0
for all ¢ > t¢, so that 7, = 0 at all times, and in which m; = 0 each period, so that 3, = 0 at
all times as well. (This requires that the nominal interest rate satisfy i; = r}* each period.)
This is obviously an optimal equilibrium; so the proposed rules would be optimal (in our
baseline case) in the event of any small enough real disturbances.

Let us consider instead the consequences of these policies in the case of a larger distur-
bance, that temporarily causes the natural rate of interest to be negative. We shall illustrate

what can happen using a numerical example, upon which we elaborate in later sections.
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Zero debt High debt

3 0.99 0.99
o 0.5 0.5
w 0.47 0.47
0 10 10
K 0.02 0.02
SG 0 0
5¢ 0 0.176
Sp 0 2.4
T 0 0.2
0 0.40 0.51
i 1.08 1.08
P 0.17 0.33
Qy/ @ 0.032 0.032
T 0.04 0.04
r -0.02 -0.02
P 0.9 0.9

Table 1: Parameter values for the numerical examples.

The numerical parameter values that we assume are given in the first column of Table 1.8

We assign values to the parameters (3,0, w, 6, and k in the same way as in Eggertsson and
Woodford (2003). In our baseline case, the new parameters s, = b/Y, s¢ = G/Y, and
sc = (/Y are assigned the values already discussed above. The value of the steady-state
wage markup % is taken from Benigno and Woodford (2003), as are the values of s, and 7
in the “high-debt” calibration (discussed in section 2.3 below). The remaining values listed

in the table are then the values for other parameters implied by these ones.

8Note that periods of our model are interpreted as referring to quarters.

YNote that the value quoted for the relative weight ¢, /¢, assumes a normalization of the target variables
in which the inflation rate is measured in percentage points per annum, while the output gap is measured in
percentage points. Note also that while the larger steady-state distortions in the high-debt case affect the
absolute magnitudes of ¢, and gy, they do not affect the ratio of the two, which is all that matters for the
definition of the optimal policies, assuming that both weights remain positive, as is true in both cases shown
in the table.
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Figure 1: Consequences of a temporary decline in the natural rate of interest: the case of a
strict inflation target and tax smoothing.

In our numerical examples, we consider a real disturbance of the following sort. Our
parameter values imply that the steady-state natural rate of interest 7 is equal to 4 percent
per annum (.01 per quarter). We assume that prior to quarter 0, the economy has been
in the optimal steady state. In quarter 0, an unexpected shock lowers the natural rate of
interest to a temporary value of r = -2 percent per annum. The natural rate then remains at
this lower level each quarter with probability p = 0.9, while with a ten percent probability
it returns to the steady-state level. After it returns to the steady-state level, it is expected
to remain there thereafter.

In the case of the policy rules (1.33) — (1.34), the occurrence of the disturbance will cause
the zero lower bound to bind, and the central bank will be unable to prevent deflation and a
negative output gap. However, to first order this has no consequences for the government’s

budget in our baseline case, and the fiscal rule still implies that 7, = 0 for all ¢. The
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consequences for inflation and output are then the same as in Eggertsson and Woodford
(2003), where a strict zero inflation target is considered under the assumption of lump-sum
taxation (so that the aggregate-supply relation is not shifted by any changes in tax policy).
Both m; and v, fall to negative levels, which they maintain for as long as r’ = r. Once the
natural rate of interest returns to its normal level, at the random date T}, the zero bound
ceases to bind, and monetary policy again succeeds at maintaining zero inflation from that
date onward. The price level is again stabilized, but at a permanently lower level than existed
prior to the disturbance (and that is lower the longer the disturbance lasts); the output gap
is again zero from date 77 onward. Figure 1 plots the state-contingent paths of inflation,
the output gap, the nominal interest rate, and the price level in this solution, for each of the
possible realizations of 77, in the case of the parameter values listed in Table 1. (The figure
superimposes the paths for 77 = 1,7} = 2, and so on. The same format is used to display
the economy’s state-contingent evolution under alternative policies below.)

We see from the figure that even a slightly negative natural rate of interest can have dire
consequences under a policy rule of this sort,?’ even though the policy is one that might
seem reasonable, and that indeed would be optimal in the case of disturbances small enough
that the zero bound would not bind. However, these unfortunate consequences of the zero
bound can be substantially mitigated, at least in principle, through commitment to monetary
and fiscal policies of a more sophisticated type. The kind of policy commitments that are

required are treated next.

2 Optimal Policy Commitments

We now turn to the characterization of optimal monetary and fiscal policy commitments,
in the case that (1.26) is an additional binding constraint on what policy can achieve. We
begin by considering the case in which both monetary and fiscal policy are chosen optimally,

and then (in section 3) compare this ideal case to suboptimal alternatives.

20During the entire period (of random length) for which the natural rate of interest is negative, deflation
occurs at a rate of -10.4 percent per annum, and aggregate output is 14.6 percentage points below its target
level.

27



inflation output gap

0.03 25
0.025 2
0.02 1.5
0.015 1
0.01 0.5
0.005 0
0 -0.5
-0.005 -1
- 0 5 10 15 20 25 -5 0 5 10 15 20 25
interest rate price level

6 100.15

5
4 100.1

3

2
100.05

1

0
1 100

-5 0 5 10 15 20 25 -5 0 5 10 15 20 25

Figure 2: Optimal responses to a decline in the natural rate of interest: the baseline case.

2.1 Optimal Policy with Zero Initial Public Debt

We first consider the baseline model already introduced in section 1.4, characterized by zero
initial public debt, zero government purchases, and a zero steady-state tax rate, so that the
intertemporal government solvency condition (1.20) reduces to (1.32). We thus consider the
problem of choosing state-contingent paths {m, y:, 77, Bt} to minimize (1.16) subject to the
constraints that (1.19), (1.27), and (1.32) be satisfied each period, together with the initial
constraints (1.22), given an initial public debt Z;to_l. We consider the optimal response to
fluctuations in the natural rate of interest 7} that affect the tightness of the constraint (1.27),
but the term 7; in the constraint (1.19) is assumed always to equal zero.

The Lagrangian for this optimization problem is of the form

Sl | 1 R
Ly, = Ey Z o8 to{i%ﬂtz + §nyf + 01e[yr — Yerr — omea] + war[me — K(Ye + 7)) — Bl
t=to

+303t[?7t—1 — Tt — 5?%]} - [5_10901,t0—1 + ©Yoto—1]|Te, — 5_1%01,::0—1%07
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Figure 3: Optimal responses of fiscal variables: the baseline case.

where 1, is the Lagrange multiplier associated with constraint (1.27), ¢, is the Lagrange
multiplier associated with constraint (1.19), and ¢3; is the Lagrange multiplier associated
with constraint (1.32).2! The final two terms of the Lagrangian correspond to the initial con-
straints (1.22).22 The notation chosen for the multipliers corresponding to these constraints
gives the first-order conditions below a time-invariant form; and this interpretation of the
multipliers indicates how the values of these multipliers should be determined if optimal
policy from ¢y onward is to represent the continuation of an optimal policy chosen at an
earlier date.

Differentiation of the Lagrangian leads to the following first-order conditions for an op-

2In forming the Lagrangian, we have used the flow form of (1.32), i.e., the relation analogous to (1.21) in
the case of a zero-debt economy.

22Tn fact, in the results reported below, we assume the values ©1,t9-1 = P2,40—1 = 0, so our conclusions
regarding optimal policy are the same as if we were to assume no initial constraints at all.
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Figure 4: Optimal responses when the disturbance lasts exactly 10 quarters.

timal policy commitment. The equalities
Gxmi — B oP1i1 + 0o — 201 =0,

QY + o1 — B 11 — Ko =0,
Kot + @3 = 0,
and
3t = Bz 141

must hold for each ¢t > t;. In addition, the inequality

o1 >0

(2.5)

must hold for each t > 0, together with the complementary slackness condition that each

period either (1.27) or (2.5) must hold with equality, i.e., ¢1; is nonzero only if the zero lower
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bound on interest rates is binding. The optimal state-contingent evolution of the endogenous
variables {7, v, Bt, 7, } is then characterized by these first-order conditions together with the
constraints and the complementary slackness condition.

We ensure satisfaction of the tranversality condition for optimality by selecting the non-
explosive solution to these equations, which is the one in which the zero bound ceases to bind
after some finite number of periods (that depends on the random realization of the number
of periods for which the natural rate of interest is negative), and hence the equilibrium
corresponds after a finite number of periods to a steady state with zero inflation. We assume
an initial public debt b,_y_; equal to the constant value b in the steady state around which
we approximate our objective and constraints,?® so that we set lA)tO_l = 0. Finally, we specify
the initial lagged Lagrange multipliers to be those that would have been associated with
an optimal commitment chosen prior to date ¢y, assuming that at that time the occurrence
of the decline in the natural rate of interest was assigned a negligible probability (though
an optimal commitment was made about what should happen if the low-probability event
were to occur). In a previously anticipated optimal steady state with a constant public debt
level b, = 0, the Lagrange multipliers would have constant values equal to zero; hence we set
101 = P2,40-1 = 0.

We again assume the numerical parameter values given in the first column of Table 1,
and again consider the effects of a real disturbance of the same kind as in Figure 1. Figures
2-4 display the optimal responses to this kind of disturbance. The solution to the first-order
conditions characterizing optimal policy is of the following form. For the first T} quarters
(where 77 is random and equal at least to 1), 7 = r < 0, and the zero bound is binding.
Hence (1.27) holds with equality, with the value r substituted for rj* each period, and ¢1; > 0.
In quarter 77 and thereafter, r; = 7 > 0. But in quarters 7} through 75 — 1, the zero bound
continues to bind, so that (1.27) holds with equality, now substituting the value 7 for r}.

From quarter Ty onward (where the value of To > T7 is known with certainty once T} is

23Here that yalue is b = 0, but the same comment applies to the way in which we set IA)t,O,l in our later
example with b > 0.
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realized), the zero bound ceases to bind. For these periods, we solve the system of equations
in which the requirement that (1.26) hold with equality is replaced by the requirement that
(2.5) hold with equality.

Because the dynamics from quarter 7} onward are completely deterministic, (2.4) requires
that @3, be constant for all ¢ > Tj. Condition (2.3) then requires that ¢, be constant for
all t > T as well. Since ¢y, = 0 for all ¢ > T, it then follows from (2.1) that 7, = 0 for all
t > Ty +1, and from (2.2) that y, take some constant value for all ¢ > T5 + 1. It then follows
from (1.19) that 7; is constant for all t > T, + 1, and from (1.32) that b, is constant for all
t > T+ 1. Thus for all ¢ > T, 4+ 1, the economy is again in a zero-inflation steady state,
possibly involving different long-run values of Bt, 74, and g, than in the initial steady state.

Figures 2 and 3 plot the state-contingent paths of inflation, the output gap, the nominal
interest rate, the tax rate, and the level of public debt in this solution, for each of the possible
realizations of T7. (As in Figure 1, these figures superimpose the paths for 73 = 1,7} = 2,
and so on.) To clarify what happens under a typical contingency, Figure 4 shows the paths
for the nominal interest rate, the output gap, and inflation in the case that T} = 10 quarters.
(In this case, Ty = 14 quarters.) The first panel of Figure 4 also plots the path of the natural
rate of interest (the dotted line), showing that it falls to the level r in quarter zero, remains
there for 10 quarters, and returns to the steady-state level 7 again in quarter 10.

Several features of the optimal policy are worthy of comment. First of all, while it would
be possible for policy to restore the economy to an optimal steady state from quarter 7T}
onward — this would involve zero inflation and maintaining a constant level of public debt,
at whatever level of would have been accumulated by that date — and while there are no
disturbances from that date onward to justify a non-stationary policy, an optimal policy
involves a commitment not to behave in this way. Thus optimal policy is history-dependent,
as in the analysis of Eggertsson and Woodford (2003). Here we see that when both monetary
and fiscal policy are chosen optimally, both are history-dependent: the inflation rate, the
nominal interest rate, and the tax rate all temporarily take values different from what their

eventual long-run values will be, that depend on the duration and severity of the previous
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decline in the natural rate of interest.

The way in which optimal monetary policy is history-dependent is again similar to the
conclusions obtained in Eggertsson and Woodford (2003). Optimal policy involves a com-
mitment to keep nominal interest rates low for a period of time after the natural rate returns
to its normal level; for example, in the case that 77 = 10, the natural rate returns to its
normal level in quarter 10, but optimal policy maintains a zero interest rate for three more
quarters (quarters 10-12), and a nominal interest rate far below the natural rate in quarter
13 as well. Monetary policy remains loose for several more quarters despite a strong output
boom in quarter 10 and continued inflation; however, both the price level and the output
gap are stabilized a few quarters later.

Our results do, however, show that there is also a role for tax policy in responding to
a liquidity trap, even if it would not be desirable to vary tax rates in response to cyclical
disturbances that are not severe enough to cause the zero lower bound to bind. In our present
model, the optimal response to the kind of disturbance considered would involve no change
in tax rates (as well as no change in the inflation target) as long as r were non-negative.
Instead, in the case of a disturbance large enough to cause the zero bound to bind, we find
that it is optimal for tax policy to respond to the shock, as proposed by Feldstein (2002).
But the optimal fiscal response is quite different from the conventional wisdom: we find that
an optimal policy involves raising tax rates during the liquidity trap, while committing to cut
them once the natural rate of interest is positive again, even though the latter commitment
requires taxes to be cut during an inflationary boom.

Our unconventional conclusions regarding optimal tax policy are actually a fairly straight-
forward consequence of the role of taxes in our model. The tax rate matters for inflation
and output determination (and hence, for those variables that appear in the loss function
(1.16)) only through its effect on the aggregate-supply relation (1.19): a higher tax rate
increases the real marginal cost of supply for any given level of output, and so increases
the inflation rate associated with a given level of output and given inflation expectations.

The value of departures from complete tax smoothing depends on the value of being able

33



-10

e
——
—
e

_12 -

‘AA A I

14 I I I I I
-5 0 5 10 15 20 25

Figure 5: The evolution of ¢y in the equilibrium of Eggertsson and Woodford (2003).

to shift the location of this aggregate-supply relation. In Eggertsson and Woodford (2003),
we consider optimal monetary policy under the assumption that there is no policy instru-
ment that can shift this constraint — which is equivalent to assuming that constraint (1.19)
applies, but that the tax rate cannot be changed — and that constraint (1.27) is shifted
by the disturbance to the natural rate of interest in exactly the same way as is assumed
here. Thus the optimal state-contingent paths of inflation, output and interest rates in that
paper represent a constrained-optimal solution to the problem considered here, where the
constraint is that tax rates remain at their initial level. (Since this path of taxes is consistent
with constraint (1.32), the problem corresponds to precisely the problem considered here,
but under an additional constraint.)

We can then ask what the value to a planner would be, in the equilibrium computed

in that paper, of shifting the aggregate-supply relation. This is indicated by the Lagrange
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multiplier associated with that constraint in the problem solved in Eggertsson and Woodford
(2003). The state-contingent paths of the Lagrange multiplier ¢, in that equilibrium, for
each possible realization of 77, are shown in Figure 5. We see that in the equilibrium
computed in the earlier paper,?* the value of s, is positive during the period of the liquidity
trap, and then negative later, before eventually approaching zero. This means that welfare
would be improved if a positive cost-push shock were to occur during the time that the
natural rate of interest is negative, followed by a negative cost-push shock after the natural
rate becomes positive again. Once it is possible to use the VAT rate for stabilization purposes,
an instrument is available that can be used to shift the constraint in both of these ways,
subject only to the constraint that any changes in the path of the tax rate still satisfy the
intertemporal government solvency condition (1.32). The fact that there is only a present-
value constraint on the path of the tax rate implies that the shadow value ¢, of shifting the
AS relation should be smoothed over time; relative to Figure 5, this would mean lowering it
during the period that the natural rate of interest is negative, and raising it in the early period
following the return of the natural rate to its normal level. This direction of adjustment of
the shadow value of further shifts in the AS relation requires that taxes be raised initially,

and in exchange be lowered later.

2.2 Optimal Policy with Additional Fiscal Instruments

In the baseline case just considered, we assume that only a single type of public debt can
be issued (riskless nominal one-period Treasury bills), and that only a single tax rate can be
varied (a proportional sales tax such as a VAT). There is then a unidimensional fiscal policy
decision to make each period: the fiscal authority must choose the tax rate, which implies a
certain level of tax revenues and hence a certain quantity of Treasury bills in circulation. In
reality, fiscal policy can be varied along multiple dimensions, because of the existence both

of multiple taxes and of multiple forms of government debt. Here we consider the extent to

24The values plotted here are for the solution to our previous model using the parameter values reported
in the first column of Table 1.
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which improved stabilization would be possible using additional fiscal instruments, and the
extent to which this might eliminate the need for history-dependent monetary policy.

We first consider the consequences of multiple forms of public debt. In the most favorable
case, suppose that the government can issue state-contingent securities of an arbitrary form.
In this case, b;_1 is no longer a single quantity determined at date ¢t — 1, but may instead take
a value that depends on the exogenous disturbances realized at date ¢.2° The intertemporal
government solvency condition is then a single constraint, rather than a separate constraint

for each state that may be realized at any date t. Condition (2.4) then becomes

P3,t+1 = P3t

for each possible state at date ¢ + 1; the Lagrange multiplier associated with the solvency
condition never changes. Since this multiplier is zero in the steady state that is assumed to
exist prior to the occurrence of the disturbance to the natural rate of interest in period #, it
follows that, under any optimal policy commitment entered into prior to date ty, the value
of by,—1 will vary with the disturbance at date ¢, in such a way that the multiplier continues
to equal zero, and so g, = 0 for all ¢ > ¢. It follows from (2.3) that g = 0 as well.

Thus the optimal evolution of inflation and of the output gap are characterized by equa-
tions (2.1) and (2.2), with the ¢ terms eliminated, together with (1.27), (2.5), and the
complementary slackness relation between these last two inequalities. (We solve these equa-
tions under the initial condition ¢;4,—1 = 0.) Condition (1.19) can then be solved for the
implied evolution of the tax rate, and condition (1.20) for the implied evolution of the state-
contingent value of government debt maturing each period.

The solution to these equations is exactly the one already shown in Figures 2-4, since the
solution to our previous system of equations already involved o = 3 = 0 for all ¢t > .
[Add further discussion.]

It follows that even if the government can issue state-contingent debt of arbitrary type,

the optimal state-contingent evolution of inflation, the nominal interest rate, the tax rate,

25Tn this case, the notation with a subscript ¢t — 1 is unappealing, but the variable enters the budget
constraints in the same way as before, so we do not propose alternative notation.
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and so on are exactly the same as in the previous section. Thus both optimal monetary policy
and optimal tax policy continue to be history-dependent, as shown above. The same result
will be obtained, of course, in the event that there are multiple forms of government debt, but
not enough types to span all states of nature. For in fact the result just obtained shows that
optimal policy, even in the event of fully state-contingent government debt, requires only
that riskless one-period nominal debt be issued. The optimal paths of all of the variables
shown in Figures 2-4 are therefore those shown in those figures regardless of the types of
debt that can be issued by the government, as long as a riskless one-period nominal bill is
one of the possible types.2°

Similarly, our results in the previous section would be unchanged by allowing for the
existence of alternative forms of taxes. As we have seen, it is already true in our baseline case
that the intertemporal government solvency condition does not preclude a state-contingent
evolution of the VAT tax rate of the kind that would be chosen in the absence of any such
constraint (this is the meaning of the result that p3; = 0 at all times). As a consequence, the
VAT tax rate can be used to shift the aggregate-supply relation in whichever way may be
desired in each possible state of the world at each date. The AS relation is then no constraint
on the possible state-contingent evolution of inflation and output (this is the meaning of the
result that @9, = 0 at all times). Given this, there is no possibility of achieving a better
outcome by varying the path of some other distorting tax (say, a tax on labor income) that
also shifts the AS relation to some extent; nor is there a need for a tax that can achieve
some different relation between the size of state-contingent shifts in the AS relation and
the state-contingent changes in government revenues. In our baseline analysis, the only
binding constraint on the achievable paths for inflation and output (the only two variables
that matter for the stabilization objective) is (1.27), which binds until the random date

T5. Hence additional fiscal instruments are relevant only to the extent that they affect this

26This irrelevance result is special to the case of zero initial public debt, assumed here as in the previous
section. However, the special case considered here suffices to show that the mere existence of a large range
of types of government debt does not eliminate the need for a commitment to history-dependent monetary
policy.
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constraint, which the VAT does not.

The only additional fiscal instrument that would make a difference is thus one that could
affect the desired timing of private expenditure for a given expected path of real interest
rates. An example would be an American-style sales tax, that is paid by the consumer in
addition to the posted (sticky) price, rather than being included in the posted price as with
a VAT.2" If we let 77 be the proportional sales tax in period ¢, then the Euler equation (1.9)

generalizes to
e(Yy = G &) (1L + 7))~

1+4 =08"1— ) 2.6
v =5 Bt (Yerr — Geaa; §e1) (14 72500) Prva) 7Y (28)

It follows that (1.27) takes the more general form
v < Eyyenr + olr} + By + By (7, — 7)), (2.7)

where 77 = log(1 + 77 /1 4 7%).

We see that the effect of a decline in the natural rate of interest on the tightness of the
constraint (2.7) can be offset by reducing the sales tax relative to its expected future value
— either by temporarily lowering the tax rate, or by promising to raise it in the future.?® In
particular, one can completely offset the effects of any stochastic variation in the natural rate
of interest by adjusting the sales tax rate (relative to its steady-state level) in proportion to

variations in the infinite-duration natural rate of interest, according to the formula?

= Er} -7 (2.8)
T=t

2"The two types of sales taxes have different consequences in our model only because of the stickiness of
prices. When prices are sticky, it matters whether it is the pre-tax price or the price inclusive of tax that is
sticky.

28This is essentially the proposal of Feldstein (2002), except that he argues that an expected increase in a
VAT rate will have the desired effect, which we find not to be the case.

29Feldstein (2002) proposes instead a commitment to steadily raise the sales tax rate relative to its initial
level, eventually reaching a permanently higher rate. Feldstein’s proposal has the disadvantage that, in the
event that the length of time that the natural rate is negative is stochastic, the eventual cumulative increase
in the sales tax rate would also have to be stochastic, so that the eventual long-run tax rate is uncertain.
Furthermore, if a similar disturbance were to occur several times over a sufficiently long period of time, and
were to be dealt with each time in accordance with the Feldstein proposal, the sales tax would eventually
reach a very high level. Under our proposal, instead, the sales tax rate is always expected to eventually
return to a fixed long-run tax rate 7°.

38



Under this rule for adjustment of the sales tax rate, zero inflation and a zero output gap at
all times will be consistent with the Euler equation (1.24) as long as the nominal interest
rate is always equal to 7 > 0, a requirement that can never be in conflict with the zero lower
bound.

The effects of the variations in an American-style sales tax required by (2.8) on the
aggregate-supply relation can in turn be neutralized by exactly offsetting variations in the
VAT rate, so that the amount of the tax that is included in the posted price is varied without
any change in the total tax wedge. (Such a shift in tax policy has no effect on the flexible-
price equilibrium level of output, and hence no effect on the aggregate-supply relation.??) A
shift in tax policy of this kind is also revenue-neutral, and so will not imply any violation of
the intertemporal government solvency constraint (1.20).3!

Hence when both kinds of taxes exist and can be adjusted in a state-contingent fashion
with sufficient flexibility, it is possible to achieve both zero inflation and a zero output gap at
all times (and so a first-best outcome) even when the natural rate of interest is occasionally
negative. In such a case, there is no need for monetary policy to be history-dependent —
neither the inflation target nor the level of nominal interest rates should depend on the past
history of disturbances (nor on current or anticipated future disturbances, for that matter).
However, this is a case in which fiscal policy can be used to ensure that the zero bound never
binds. It remains quite generally true that if the zero bound sometimes binds, an optimal
monetary policy involves a commitment to looser policy than would be associated with a

strict zero inflation target for a period of time after it again becomes feasible to target zero

30 Auerbach and Obstfeld (2004) criticize the proposal of Feldstein (2002), on the ground that in their
optimizing model a commitment to increase the sales tax rate over time while the economy is in a “liquidity
trap” lowers welfare. But this reduction in welfare results from the adverse supply-side effects of a higher
sales tax that is not offset by lowering some other tax, as proposed by Feldstein. Our analysis here shows
that it is possible to achieve the effect on demand sought by Feldstein without any supply-side effect, through
a coordinated change in the expected paths of two different taxes.

31The argument here relies on the non-existence of fiscal stress effects of the real disturbance that shifts
the natural rate of interest. Since the case described in the text involves no variation in interest rates in
response to the disturbance, there will be no fiscal stress effect, even in an economy with a positive initial
debt, as long as the disturbance has no effect on the target level of output Yt*. Even when Yt* is changed,
the existence of a sufficient number of fiscal instruments may make it possible for a policy consistent with
(2.8) to also have no effect on the aggregate-supply relation or on intertemporal government solvency.
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inflation.

It is also unclear how realistic it is to suppose that a sales tax can be adjusted in the
fashion required to eliminate the problem of the zero bound under all circumstances. Few
countries have a sales tax of the particular type required to offset the effects on the in-
tertemporal Euler equation of variations in the natural rate of interest. Even in the case
of the U.S., sales taxes of this kind are imposed at the state or local level, but not by the
federal government, so that variations in a sales tax rate is not a potential tool of national
fiscal policy. Furthermore, sales taxes would have to be fairly large to be used in the way
proposed above. In the case of the real disturbance considered in our numerical examples
above, equation (2.8) requires that the sales tax be reduced by 15 percentage points when
the real disturbance occurs that lowers the natural rate of interest to -2 percent. This would
not be possible, supposing that the tax rate must be non-negative at all times, unless 7° is
at least 15 percent. Hence a substantial portion of government revenues would have to be
raised by the sales tax under normal circumstances; and even granting that, it would have to
be possible to dramatically alter the tax rate temporarily in response to the real disturbance.
Barring such favorable circumstances, it seems unlikely that tax policy can be used to fully
undo the consequences of variation in the natural rate of interest, and hence to eliminate

the need for history-dependent monetary policy.3?

2.3 Optimal Policy with Public Debt and Tax Distortions

We now consider the robustness of our results to the consideration of a situation in which
there exists a positive level of public debt, and accordingly a positive steady-state tax rate.
In this (more realistic) case, we must take account of the first-order effects on the govern-
ment budget of variations in inflation, interest rates, or the size of the real tax base. The

intertemporal government solvency constraint accordingly takes the more general form (1.20)

32Qther kinds of tax incentives might affect the timing of expenditure as well, such as enactment of an
investment tax credit during the period that the natural rate of interest is negative. Here we have emphasized
what can be achieved with a variable sales tax rate, both because it is simple to analyze in the context of
our model, and because it allows us to discuss Feldstein’s (2002) proposal.
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Figure 6: Optimal responses to a decline in the natural rate of interest: a case with positive
debt but no fiscal stress effect.
rather than (1.32).

A similar Lagrangian method can be used in this more general case. The first-order

conditions (2.1) — (2.2) must be replaced by
QrTy — ﬁflUSOLtfl + par — P2i-1 — Sppar + Spp3 -1 = 0, (2.9)

Qe + P10 — B o141 — Koo — sp(1— B(L— 07 1)) s + 50 31 = 0, (2.10)

while conditions (2.3) — (2.5) and the complementary slackness relation apply as before.
Once again, we solve these conditions using initial conditions ¢;—1 =0 for j =1,2,3.

As a numerical example with a level of public debt similar to that of a number of industrial
economies, we now calibrate our model with the parameter values indicated in the second
column of Table 1. The only changes are our assumption now of an initial public debt,

and hence a steady-state public debt b, equal to 60 percent of steady-state annual GDP, or
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Figure 7: Optimal responses of fiscal variables: a case with positive debt but no fiscal stress
effect.

2.4 quarters’ GDP; and our assumption of steady-state government transfers of a size that
require steady-state tax collections to equal 20 percent of national income,?® along with the
implied changes in other parameters that depend on the values of these. We consider the
optimal response to the same kind of disturbance to the natural rate of interest as in Figures
2-4, and for the sake of simplicity we shall first consider a disturbance that has no fiscal
stress effect, just as in the earlier figures.

The optimal responses under this variation in parameter values are shown in Figures 6
and 7, which have the same format as Figures 2 and 3. The optimal equilibrium in this case

has many similarities to the one displayed in Figures 2 and 3 for the baseline model. Most

33This parameterization differs from the one used in Benigno and Woodford (2003) in that government
spending is assumed to consist entirely of transfers rather than of purchases of goods and services by the
government. Here we maintain the assumption that s¢ = 0 even in our high-debt case, so that our real
disturbances still have no cost-push effects, in order not to introduce a further complication into our discussion
of optimal policy.
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notably, the optimal policy again involves a commitment to create an inflationary boom
(using both monetary and fiscal stimulus) in the period immediately following the return of
the natural rate of interest to its normal level. And as in Figure 3, we again see in Figure
7 that it is optimal to raise the tax rate during the period in which the natural rate is low,
while committing to lower it once the natural rate returns to its normal level.

Optimal policy for the high-debt economy differs quantitatively, however. In particular,
the optimal degree of inflation that should be created in the periods in which the natural
rate of interest is negative is greater in the case of a positive initial public debt. This
indicates that the existence of a positive nominal public debt (and the availability only of
distorting taxes as a source of government revenue) increases the desirability of responding
to a decline in the natural rate of interest through an inflationary policy. Furthermore, this
result does not reflect an incentive to inflate away the value of nominal public debt ex post
that a policymaker would instead wish to commit itself in advance not to yield to. For
the responses shown in Figures 6 and 7 represent the responses to a real disturbance that
lowers the natural rate of interest under the continuation of an optimal state-contingent
commitment that would have been chosen prior to quarter zero, and thus prior to learning
that the disturbance would occur.

In the case of a positive steady-state debt level, it is still theoretically possible for a real
disturbance to lower the natural rate of interest while having no effect on fiscal stress, as
maintained in the last numerical example. However, as discussed in section 1.3, it is more
plausible that a disturbance that could lower the natural rate of interest sufficiently for the
zero bound to bind would also reduce fiscal stress. We accordingly consider an example of
that more realistic kind. Specifically, we now assume that the real disturbance that lowers
the natural rate of interest has no effect on the target level of output Yt* This implies that
the fiscal stress is lowered to a value f < 0 when the natural rate of interest falls to the level
r, and that f; = f for as many quarters as ;' = r, while f; = 0 again once r}’ = 7-.%*

In order to determine optimal policy in this case, we solve the same system of equations

34In our numerical example, f = -0.33.
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Figure 8: Optimal responses to a decline in the natural rate of interest: a case with positive
debt and a negative fiscal stress effect.

(and with the same parameter values) as in the case of Figures 6-7, except that in equation
(1.20) we now set f; = f in periods zero through 77 — 1. The optimal responses to this type
of real disturbance are shown in Figures 8 and 9, which have the same format as Figures 6
and 7.

The fact that in this case the real disturbance also lowers fiscal stress has a number of
consequences for the way that optimal policy responds to the shock. Not surprisingly, taxes
do not need to be increased as much in this case, and it is possible to permanently lower
both the tax rate and the level of public debt as a result of the disturbance. During the
period over which the effects of the real disturbance on both the natural rate of interest
and fiscal stress persist, inflation increases less and the output gap falls less, as a result of
the smaller increase in the tax rate. But despite these quantitative differences, the general

character of the optimal state-contingent evolution is similar to what we obtained in the
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Figure 9: Optimal responses of fiscal variables: a case with positive debt and a negative
fiscal stress effect.

baseline analysis.

Thus our main results in the baseline case continue to hold when we allow for a fairly
substantial positive level of public debt and for fiscal stress effects of a plausible magnitude.
We again find that tax policy should be adjusted in response to a real disturbance that
causes the zero lower bound on interest rates to bind, even when the disturbance is of a type
that would not justify any change in tax rates otherwise. But — at least when the available
tax instrument affects the economy primarily through its supply-side effect on the marginal
cost of supplying output — the optimal tax response is actually to raise taxes in the event
of such a disturbance, while committing to lower them during the inflationary boom that
monetary policy will also facilitate once the natural rate of interest returns to a normal level.
And optimal monetary continues to be history-dependent in the same way as in the analysis

of Eggertsson and Woodford (2003). The distortion created by the binding zero lower bound
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on interest rates should be mitigated through a commitment to use both monetary and fiscal
policy to create a temporary output boom and rise in prices following the end of the real
disturbance, though the price level should be stabilized again fairly soon. Such a policy will
involve keeping nominal interest rates lower for several quarters than the level that would

be required to maintain price stability.

3 The Cost of Purely Forward-Looking Policy

Our analysis of an optimal policy commitment in the previous section has shown that it would
be history-dependent. But how much does history-dependence of policy actually matter? A
purely forward-looking approach to the conduct of policy, which would suffice in the event
that the zero bound does not bind,*® will clearly entail some additional distortions relative
to the optimal policy characterized above in the event that the zero bound is temporarily
binding. Here we consider the nature of these distortions, and how much they matter

quantitatively.

3.1 Optimal Forward-Looking Policies

We begin by considering the best possible policy rules to which the monetary and fiscal
authorities might commit themselves, subject to the restriction that both monetary and
fiscal policy be purely forward-looking.?® By purely forward-looking policy we mean a rule
of conduct which takes account only of the possible future evolution of the target variables
(inflation and the output gap) given current conditions, and hence is independent of any
past conditions that no longer affect inflation or output determination (Woodford, 2000).

In the case of the policy problem considered here, we observe that optimal policy, as

35Here we assume, as in our baseline case, that the real disturbances under consideration have no cost-push
effects and no fiscal stress effects.

36While discretionary fiscal policy is purely forward-looking, if we consider only the case of a Markov perfect
equilibrium, we do not here assume that the policymakers must be discretionary optimizers. Thus we allow
commitment to policy rules that may be superior to the conduct of policy by discretionary optimizers, in
order to identify the advantages of history-dependent policy rather than the benefits of commitment as such.
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characterized in section 2.1,3” has the property that the variables m,

Ut e+ (1— 5)¢6t—17
T = Tt — (1 - 5)@—1;
by — i1

g
I

each evolve in response to exogenous disturbances in a way that is independent of the level
of the public debt (though the absolute levels of both the tax rate and the output gap
depend on the level of the debt). That is, a unit increase in the initial public debt results,
under an optimal policy commitment, in a permanently higher public debt by that amount,
a permanently higher tax rate by the amount necessary to pay the interest on the additional
public debt, a permanently lower level of output by the amount by which the flexible-price
equilibrium level of output is reduced by the higher taxes, and no changes otherwise.

This shows that the optimal policy problem is actually independent of the level of the
public debt, once written in terms of these transformed variables. Hence it makes sense
to further require, in order for a policy to count as purely forward-looking, that the paths
determined for these transformed variables should depend only on conditions that affect their
possible evolution from the current date onward — which is to say, that the paths chosen
for the transformed variables should be independent of the level of public debt.

In terms of the transformed variables, (1.19) becomes

™ = K[ + (T — 7)) + BE T4, (3.1)
(1.21) becomes
At = _/6_17:157 (32)
and (1.27) becomes
Ut < By — (1= BB+ o(rf + Eymega). (3.3)

37For the sake of simplicity, the discussion here is conducted under the same simplifying assumptions as in
section 2.1, though a similar definition of the optimal purely forward-looking policy would be possible under
more general assumptions.
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Figure 10: Responses to a decline in the natural rate of interest under optimal purely forward-
looking policies.

Thus the possible state-contingent evolutions {m, g, 7;, A} from some date t onward depend
only on the evolution of the process {r}'} from that date onward. In the case that the natural
rate of interest follows a Markov process, as assumed here, the only aspect of the economy’s
state at date t that is relevant for the possible equilibrium values of the transformed variables
at that date or later is the current value r7'. We therefore define a purely forward-looking
policy as one under which 7, g, ¢, and A, each period will depend only on the value of 7}
in that period. (It then follows that i; will depend only on the current value of 7} as well.)

In the case of the specific Markov process for the natural rate of interest considered in
the numerical examples of section 2, a purely forward-looking policy can be fully specified
by 8 numerical values, the values (7,7, 7, A) for the transformed variables whenever 7 = 7,
and the values (m, y, 7, A) whenever r} = r. An optimal purely forward-looking policy is one

in which these coefficients have been chosen so as to minimize the expected losses (1.16).
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Figure 11: Responses of fiscal variables under optimal purely forward-looking policies.

We shall suppose furthermore that at the time that this optimal commitment is chosen,
the occurrence of the state in which r}' = r is regarded as highly unlikely. It then follows that
the policy commitment for the normal state should be chosen so as to maximize steady-state
welfare, i.e., to minimize ¢,72+q,y*. Hence the optimal forward-looking policy would involve
a commitment to implement the optimal (zero-inflation) steady state as long as rf* = 7; thus
A=9=7=A=0,and i = 7.5

Given this solution, the policy commitment for the state in which ;' = r is chosen so as
to minimize expected discounted losses conditional on being in that state, taking as given

the commitment to pursue zero inflation as soon as the natural rate returns to its normal

level. Under this stipulation, the policy commitments (x, y,7,A) that are feasible are those

38The same conclusion about the conduct of policy once the natural rate returns to its normal level would
also be reached under the assumption of discretionary optimization, independently of the probability that
might have initially been assigned to the occurrence of the disturbance that temporarily lowers the natural
rate of interest.
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that satisfy the conditions
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implied by (3.1) — (3.3) respectively. These three conditions then identify the set of purely
forward-looking policies.
Under the same assumptions, expected discounted losses looking forward from a date %
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L(z,y, A).

The optimal purely forward-looking policy is then defined by the values (m,y,7,A) that
minimize L(xm,y, A) subject to constraints (3.4) — (3.6).

It is easily shown that the function L(zx, y, A) reaches its global minimum at 7 =y = A =
0. These values also satisfy (3.4) and (3.5), and they satisfy (3.6) as well if and only if r > 0.
Hence if r > 0, the optimal purely forward-looking policy involves a constant zero inflation
rate and a constant tax rate, regardless of the fluctuations in the natural rate of interest, and
a nominal interest rate that perfectly tracks the natural rate of interest. Instead, if r < 0,
the zero lower bound binds in the low-natural-rate state.

In our baseline numerical example, considered in section 2.1 above, the optimal purely

forward-looking policy would lead to responses of the form shown in Figures 10 and 11.%°

39Tn this example, the optimal forward-looking policy involves 7 = .07 percentage points per annum,
y = —2.2 percentage points, T = 5.7 percentage points, and A = —5.7 percentage points per quarter.
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Under an optimal forward-looking policy, the tax rate would be raised while the economy is

9

in the “liquidity trap,” with the consequence that tax rates are then permanently lower once
the economy exits from the trap, as a result of the reduction in the public debt. This is once
more contrary to conventional wisdom, but in conformity with our results above regarding
optimal fiscal policy when policy is not constrained to be purely forward-looking. As in
the case of fully optimal policy, the optimal forward-looking regime actually creates a slight
degree of inflation during the period that the zero bound is binding.

Even under the constraint that policy be purely forward-looking, we see that it is possible
to improve greatly upon the outcome with pure tax smoothing, the case shown in Figure
1. (Note that the monetary policy assumed in Figure 1, a strict zero inflation target, is
the optimal purely forward-looking monetary policy, given tax smoothing, since the zero
lower bound does not allow any more inflationary policy in the periods when the natural
rate of interest is negative.) An appropriate adjustment of the tax rate in response to the
real disturbance — specifically, raising taxes while the natural rate of interest is negative,
so that lower taxes will be anticipated once the natural rate returns to its normal level —
can greatly improve the stabilization of both inflation and the output gap.

It may be surprising that the use of fiscal policy for stabilization purposes can have such
a strong effect even when it is constrained to be purely forward-looking, whereas the optimal
purely forward-looking monetary is unable to prevent severe deflation and an output collapse.
The reason this is possible is that the size of the public debt is a state variable that naturally
conditions future policy, and hence current fiscal policy can be used, in effect, to commit
future policy to be more expansionary, even when future policy will be purely forward-
looking. Our result here is reminiscent of the finding of Eggertsson (2004a) that (Markov-
perfect) discretionary policy does not lead to nearly so bad an outcome when monetary and
fiscal policy are both chosen by an optimizing policy authority as when monetary policy
is chosen under discretion while fiscal policy is not used for stabilization purposes; in that
analysis (based on a different model of tax distortions), fiscal policy is effective only because

it provides a way in which current policy can be used to influence the expected future conduct
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of policy.

However, the way in which fiscal policy should be used to influence expectations regarding
future policy is different in the present case; because future policy is not expected to be
determined under discretion, there is no possibility of creating expectations of inflation
following the return of the natural rate to its normal level by increasing the size of the nominal
debt. Instead, the size of the public debt carried into the future is expected to influence the
future level of taxes, that will in turn influence real activity and real incomes for supply-side
reasons. But the expectation of a future output boom has important consequences for pricing
and spending decisions while the economy is in the liquidity trap, allowing a considerable
improvement in stabilization.

The tax increases while the economy is in the liquidity trap also help more directly, by
providing a cost-push incentive for prices not to be cut. But here as well, it is not the
immediate effect of the increase in supply costs that is beneficial, but rather the expectation
that supply costs will remain high in future periods, if the disturbance continues, so that
there is no ground for deflationary expectations; hence it is the commitment to keep taxes
high in future periods, if the disturbance continues, rather than the current level of taxes as
such, that is crucial to the effectiveness of the policy. Thus clear communication with the
public about the way current conditions affect the outlook for future policy continues to be
an essential element of effective policy, just as in the discussion of optimal monetary policy
in Eggertsson and Woodford (2003).

Our results here suggest that Krugman’s (1998) emphasis on the importance of creating
expectations of inflation following the economy’s exit from the “trap” is somewhat exag-
gerated. Mitigating the distortions created by the zero lower bound on interest rates (or
for that matter, some other, possibly higher, lower bound) does depend critically upon the
creation of expectations of a more expansionary policy in the future as a consequence of the
current disturbance. However, expectations of a supply-side boom (while monetary policy
is used to maintain stable prices) can also reduce distortions resulting from the trap to a

considerable extent. Expectations of high future real incomes will reduce the incentives for
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either price cuts or low spending during the period of the trap. And once it ceases to be
expected that prices will decline sharply while the zero bound binds, real interest rates will
no longer be perceived to be so high relative to the current natural rate of interest; it is this
mechanism that makes changes in expectations regarding future policy such a potent tool in

our model.*0

3.2 Optimal Fiscal Policy but a Strict Inflation Target

Finally, we consider the costs associated with the pursuit of a forward-looking monetary
policy, in the case that an optimal, history-dependent fiscal policy is allowed. In this way we
consider the best possible outcome under a monetary policy of this kind. In particular, we
allow fiscal policy to be chosen so as to mitigate the consequences of the simple monetary
policy rule.

Specifically, we shall suppose that monetary policy is described by a strict zero inflation
target, that is pursued to the extent that the zero lower bound on nominal interest rates
allows the target to be attained. Thus we again impose the requirement that (1.34) holds each
period, along with (1.27), and that at least one of these holds with equality in any period. We
note that this rule for monetary policy would be optimal in the event of disturbances small
enough for the zero lower bound to be consistent with zero inflation; and that it is also the
monetary policy pursued under an optimal purely forward-looking regime, as characterized in
the preceding section. We now consider the consequences of choosing fiscal policy optimally
(and in a history-dependent way) under the constraint that monetary policy will be of this
kind.

Optimization subject to the additional constraint (1.34) requires only a small modification
of the approach discussed in section 2.1. Our numerical results in the case of our baseline
parameter values are plotted in Figures 12 and 13. Since the optimal policy in the absence of

this constraint never involves deflation, and positive inflation over the entire period for which

40For similar reasons, variations in the expected level of government purchases can have a substantial
“multiplier” effect during a liquidity trap, as shown by Eggertsson (2004b).

23



inflation

1 T
0.5F 1
0 -
-0.5f T
-1 | | | | |
-5 0 5 10 15 20 25
output gap
3 T
2 -
l -
0 -
-1 | | | |
-5 0 5 10 15 20 25
interest rate
6 T
41+
0 -
-2 | | | | |
-5 0 5 10 15 20 25

Figure 12: Responses to a decline in the natural rate of interest: optimal fiscal policy with
a strict inflation target.

the zero bound is binding (see the first panel of Figure 2), it is perhaps not surprising that for
our baseline parameter values, we find that the optimal policy subject to constraint (1.34)
is one with zero inflation at all times. Fiscal policy is then used to achieve the minimum
possible expected discounted sum of squared output gaps, consistent with the maintenance
of zero inflation. Because of constraint (1.27), a zero output gap at all times is not possible;
and a commitment to the creation of a positive output gap immediately after the natural
rate of interest returns to its normal level reduces the extent to which this constraint requires
the output gap to be negative while r}’ =r.

Thus optimal fiscal policy is history-dependent: it involves a commitment to cut taxes
as soon as 1y = 7T again, so as to create an output boom even though monetary policy
targets zero inflation. Taxes are instead raised while the natural rate of interest is negative,

in order to build up the government assets that allow the commitment to later cut taxes to

o4



taxes

-5 0 5 10 15 20 25
debt
1 T
ol
-1k
2
-3l
a4l N
-5 ! ! ! ! !
-5 0 5 10 15 20 25

Figure 13: Optimal responses of fiscal variables in the case of a strict inflation target.

be consistent with intertemporal government solvency. The general character of the optimal
fiscal commitment is similar to what we had obtained when both monetary and fiscal policy
are optimally history-dependent (compare Figure 13 with Figure 3). However, the tax cuts
that must be promised after the natural rate returns to its normal level are somewhat larger
in the present case, as inflationary monetary policy cannot be used to help create the boom,
the anticipation of which reduces the extent to which the zero bound requires a negative
output gap in the earlier period. The extent to which the output gap can be stabilized
through the use of history-dependent fiscal policy alone remains somewhat less than when
both monetary and fiscal policy commitments are optimally chosen.

Table 2 summarizes our conclusions regarding the welfare consequences of alternative
assumptions about the conduct of monetary and fiscal policy. (All values reported are for our

baseline case with zero initial public debt.) In each case, the value of the loss function (1.16)
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inflation target, tax smoothing 100.0000

optimal forward-looking policies 0.1333
optimal monetary, tax smoothing 0.0311
inflation target, optimal fiscal [VAT only] 0.0211
optimal monetary and fiscal [VAT only] 0.0208
inflation target, optimal fiscal [two taxes] 0
optimal monetary and fiscal [two taxes] 0

Table 2: Relative expected losses under alternative policies.

is reported, conditional upon the occurrence in period ¢y of the real disturbance that lowers
the natural rate of interest to r, under the rational-expectations equilibrium associated with
the given policy regime. The losses are normalized so that 100 means the level of expected
loss associated with the naive policy of strict inflation targeting combined with simple tax
smoothing (discussed in section 1.4).

It is clear that even when only a VAT rate can be adjusted — or more generally, when the
only available tax instruments are ones that have purely supply-side effects — an appropriate
use of tax policy for stabilization purposes can be quite beneficial when the zero lower
bound on interest rates binds. When only purely forward-looking policies are considered,
the best fiscal rule of this type is a considerable improvement over the outcome with pure
tax smoothing (the case shown in Figure 1): expected discounted losses fall by a factor of
750. In the case that monetary policy is assumed to adhere to a strict zero inflation target,
an optimal fiscal commitment can do even better, cutting expected discounted losses by an
additional factor of more than 6, so that losses are reduced to only 0.02 percent of what they
would be with complete tax smoothing. With sufficient fiscal instruments — specifically, if
it is possible to adjust both an American-style sales tax as well as a VAT rate with sufficient
flexibility in response to real disturbances — even the remaining distortions can in principle
be completely eliminated under a strict zero inflation target for monetary policy.

While we have found that except in the ideal case of the two taxes that are each adjusted
optimally, optimal monetary policy continues to be characterized by the kind of history

dependence stressed in Eggertsson and Woodford (2003), this sophisticated form of monetary
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policy commitment only matters greatly for welfare when fiscal policy is not used (or not
properly used) for stabilization purposes. Even when only a VAT rate can be adjusted, if
tax policy responds optimally to the real disturbance that makes the natural rate of interest
temporarily negative, fiscal policy can eliminate most of the distortions associated with the
“liquidity trap” scenario shown in Figure 1 even when monetary policy adheres to a strict
zero inflation target. The further stabilization that can be obtained through an optimal
monetary policy commitment only reduces expected discounted losses by an additional 1.3
percent. If fiscal policy can be adjusted in more flexible ways, the additional welfare gains
from history-dependent monetary policy are even smaller (zero in the case of ideally flexible
fiscal policy).

On the other hand, if fiscal policy does not respond to cyclical developments at all (the
case of pure tax smoothing), a history-dependent monetary policy commitment can greatly
improve stabilization, as shown in Eggertsson and Woodford (2003).*' Hence the degree to
which it is essential for a central bank to respond to a negative natural rate of interest by
committing itself to a temporary loosening of policy later depends to an important extent on
the degree to which it can expect fiscal policy to be adjusted in a way that serves stabilization

purposes or not.

41Optimal monetary policy in the case of perfect tax smoothing results in an equilibrium of exactly the
kind displayed in Figures 3-5 of Eggertsson and Woodford (2003), which we do not reproduce here, though
we list the associated expected losses in Table 2.
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